Skip to main content

Posts

Showing posts from August, 2021

Translate Document from One Language To Another - Azure Cognitive Services

In this article, I’m going to write about another interesting Azure-based service named  Translator , which falls under the umbrella of  Azure Cognitive Services . This service helps us to translate documents from one language to another and at the same time, it retains the formatting and the structure of the source document. So, let’s say, if any text in the source document is in italics, then the newly translated document, will also have the text in italics. Key Features of Translator Service Let’s have a look at a few of the key features, of the  Translator  service, Auto-detection of the language of the source document Translates large files Translates multiple files in a shot Preserves formatting of the source document Supports custom translations Supports custom glossaries Supported document types – pdf, csv, html/htm, doc/docx, msg, rtf, txt, etc. Implementation can be done using C#/Python as SDKs are available. Suppo

Using Customer Reviews To Know Product's Performance In Market - Azure Sentiment Analysis

Today I'll be mentioning one of the useful functions of Azure Text Analytics - Sentiment Analysis. Azure text analytics is a cloud-based offering from Microsoft and it provides Natural Language Processing over raw text.  Use Case Described In this article, I will explain how to use customer-provided product reviews to understand the market insight and how one can take a call on manufacturing the products in the future. Here is the pictorial representation of this use case.   Here are the high-level steps of how we can achieve this entire flow: Step 1 This entire process starts with the data collection part and for this, I'm using a CSV file with customer-provided reviews. Here is the gist of it: Step 2 Once data is collected, we need to import the data and for that, I'm using Jupyter Notebook inside Visual Studio Code. Here is the Python code to read and extract data from CSV file: import csv feedbacks = [ ] counter = 0 with open ( 'Feedback.csv' ,